

5 Ω Max Ron, 4- and 8-Channel ±15 V/12 V/±5 V *i*CMOSTM Multiplexers

Preliminary Technical Data

ADG1408/ADG1409

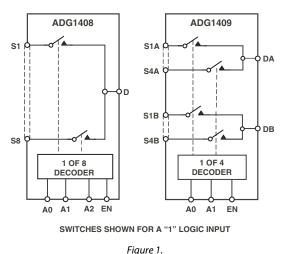
FEATURES

5 Ω max on resistance 0.5 Ω max on resistance flatness 33 V supply maximum ratings Fully specified at ±15 V/12 V/±5 V 3 V logic compatible inputs Rail-to-rail operation Break-before-make switching action 16-lead TSSOP and 4 mm × 4 mm LFCSP packages Typical power consumption (< 0.03 µW)

APPLICATIONS

Relay replacement Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems Relay replacement

GENERAL DESCRIPTION


The ADG1408 and ADG1409 are monolithic *i*CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1409 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

The *i*CMOS (industrial-CMOS) modular manufacturing process combines high-voltage CMOS (complementary metaloxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 30-V operation in a footprint that no other generation of high-voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

5

The ultralow on resistance and on resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. *i*CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments

PRODUCT HIGHLIGHTS

- 1. 5Ω max on resistance.
- 2. 0.5Ω max on resistance flatness.
- 3. 3 V logic compatible digital input $V_{IH} = 2.0$ V, $V_{IL} = 0.8$ V.
- 4. 16-lead TSSOP and 4 mm ×4 mm LFCSP package.

TABLE OF CONTENTS

Specifications	3
Dual Supply	
Single Supply	
Dual Supply	5
Absolute Maximum Ratings	7
ESD Caution	7

Pin Configurations—TSSOP	8
Terminology	9
Typical Performance CharacteristicS 1	0
Test Circuits1	2
Outline Dimensions 1	4
Ordering Guide1	4

REVISION HISTORY

SPECIFICATIONS

DUAL SUPPLY¹

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			Vss to VDD	V	
Ron	3			Ωtyp	$V_D = \pm 10 \text{ V}, \text{ I}_S = -10 \text{ mA}$
	4	5	5	Ωmax	
Ron Flatness				Ωtyp	$V_{\rm D} = +10 \text{ V}, -10 \text{ V}$
	0.5			Ω max	
ΔR _{on}	0.5			Ωtyp	$V_{\rm D} = +10 \text{ V}, -10 \text{ V}$
	0.5			Ωmax	
LEAKAGE CURRENTS				2211107	
Source OFF Leakage I _s (OFF)	±0.01			nA typ	$V_{D} = \pm 10 V$, $V_{S} = -10 V$;
Source of a Leakage is (of f)	±0.01			in typ	Test Circuit 2
	±0.5	±2.5	±50	nA max	± 0.5
Drain OFF Leakage I _D (OFF)	±0.5	<u>-</u> 2.9	±50	III (III dx	$V_D = \pm 10 \text{ V}; \text{ V}_S = \pm 10 \text{ V};$
ADG1408	±1	±100	±100	nA max	Test Circuit 3
ADG1409	±1	±100 ±50	±50	nA max	
Channel ON Leakage I _D , I _S (ON)				The conduct	$V_{\rm S} = V_{\rm D} = \pm 10 \text{ V};$
ADG1408	±1	±100	±100	nA max	Test Circuit 4
ADG1409	±1	±50	±50	nA max	
DIGITAL INPUTS				-	
Input High Voltage, VINH		2.0	2.0	V min	
Input Low Voltage, VINL		0.8	0.8	V max	
Input Current					
I _{INL} or I _{INH}	±0.005			μA max	VIN= VINL or VINH
		±0.5	±0.5	µA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
t transition	80	120	120	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		250	250	ns max	$V_{S1} = \pm 10 V$, $V_{S8} = \pm 10 V$;
					Test Circuit 5
Тввм	10	10	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
			1	ns min	V _s = 10 V; Test Circuit 6
t _{on} (EN)	85	125	125	ns typ	$R_L = 300 \ \Omega \ C_L = 35 \ pF;$
	150	225	225	ns max	Vs = 5 V; Test Circuit 7
t _{off} (EN)	40	65	65	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		150	150	ns max	V _s = 5 V; Test Circuit 7
Charge Injection	20		20	pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 10 nF$; Test Circuit 8
OFF Isolation	75			dB typ	$R_L = 1 \ k\Omega$, f = 100 kHz;
					V _{EN} = 0 V; Test Circuit 9
Channel-to-Channel Crosstalk	85			dB typ	$RL = 1 k\Omega$, $f = 100 kHz$;
					Test Circuit 10
Total Harmonic Distortion, THD + N	0.002			% typ	$R_L = 600 \Omega$, 5 V rms; f=20 Hz to 20 kHz
–3 dB Bandwidth	50			MHz typ	$R_L = 300 \Omega$, $C_L = 5 pF$; Test Circuit 10
					Test Circuit 10
Cs (OFF)	15			pF typ	f = 1 MHz

Preliminary Technical Data

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ²					
C _D (OFF)					f = 1 MHz
ADG1408	100			pF typ	
ADG1409	50			pF typ	
C _D , C _s (ON)					f = 1 MHz
ADG1408	150			pF typ	
ADG1409	75			pF typ	
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		5	5	μA max	
I _{DD}	150			μA typ	Digital inputs= 5 V
			300	μA max	
lss	0.001			μA typ	Digital inputs= 0 V or V _{DD}
		5	5	μA max	
Ignd	0.001			μA typ	Digital inputs= 0 V or V _{DD}
		5	5	μA max	
Ignd	150			μA typ	Digital inputs= 5 V
		5	300	μA max	

 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY¹

 V_{DD} = 12 V V \pm 10%,, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	
R _{ON}	6			Ωtyp	$V_D = 3 V$, 10 V, $I_S = -1 mA$
	7	8	9	Ωmax	
R _{on} Flatness				Ωtyp	$V_D = 3 V$, 10 V, $I_S = -1 mA$
	1.5			Ωmax	
ΔRon	0.5			Ωtyp	$V_D = 3 V$, 10 V, $I_S = -1 mA$
				Ωmax	
Channel ON Leakage I _D , I _S (ON)					$V_{S} = V_{D} = 8 V/0 V;$
ADG1408	±1	±100	±100	nA max	Test Circuit 4
ADG1409	±1	±50	±50	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	2.0	V min	
Input Low Voltage, V _{INL}		0.8	0.8	V max	
Input Current					
IINL or IINH		±10	±10	μA max	$V_{IN} = 0 \text{ or } V_{DD}$
C _{IN} , Digital Input Capacitance	8			pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²					
t transition	130			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
					$V_{51} = 8 V/0 V, V_{58} = 0 V/8 V;$
					Test Circuit 5
Тввм	10			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
			1	ns min	V _s = 5 V; Test Circuit 6
t _{on} (EN)	140			ns typ	$R_L = 300 \Omega C_L = 35 pF;$
					V _s = 5 V; Test Circuit 7

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ²					
t _{off} (EN)	60			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
					Vs = 5 V; Test Circuit 7
Chargo Injection	5			nC turn	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 10 nF$;
Charge Injection	5			pC typ	Test Circuit 8
OFF Isolation	-75			dB typ	$R_L = 1 \ k\Omega \ f = 100 \ kHz;$
					V _{EN} = 0 V; Test Circuit 9
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 1 \ k\Omega$, f = 100 kHz;
					Test Circuit 10
Total Harmonic Distortion, THD + N	0.002			% typ	$R_L = 600 \Omega$, 5 V rms; f=20 Hz to 20 kHz
–3 dB Bandwidth	50			MHz typ	$R_L = 300 \Omega$, $C_L = 5 pF$; Test Circuit 10
C _s (OFF)	15			pF typ	f = 1 MHz
C _D (OFF)					f = 1 MHz
ADG1408	100			pF typ	
ADG1409	50			pF typ	
C _D , C _s (ON)					f = 1 MHz
ADG1408	150			pF typ	
ADG1409	75			pF typ	
POWER REQUIREMENTS					V _{DD} = 13.2 V
IDD		1	1	μA typ	Digital inputs= 0 V or V_{DD}
		5	5	μA max	
I _{DD}	150			μA typ	Digital inputs= 5
			300	μA max	

 1 Temperature ranges are as follows: B Version: –40°C to +85°; T Version: –55°C to +125°. 2 Guaranteed by design, not subject to production test.

DUAL SUPPLY¹

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			Vss to VDD	V	
Ron	6			Ωtyp	$V_D = \pm 3.3 \text{ V}, \text{ Is} = -10 \text{ mA}$
	7	8	10	Ωmax	
ΔR _{on}	0.5			Ωmax	V _D = +3.3 V, -3.3 V
LEAKAGE CURRENTS					
Source OFF Leakage Is (OFF)	±0.01			nA typ	$V_D = \pm 3.3 \text{ V}, V_S = -3.3 \text{ V};$ Test Circuit 2
	±0.5	±2.5	±50	nA max	
Drain OFF Leakage I _D (OFF)					$V_D = \pm 3.3. V; V_S = \pm 3.3 V;$
ADG1408	±1	±100	±100	nA max	Test Circuit 3
ADG1409	±1	±50	±50	nA max	
Channel ON Leakage ID, Is (ON)					$V_{S} = V_{D} = \pm 3.3 V;$
ADG1408	±1	±100	±100	nA max	Test Circuit 4
ADG1409	±1	±50	±50	nA max	

Preliminary Technical Data

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	2.0	V min	
Input Low Voltage, V _{INL}		0.8	0.8	V max	
Input Current					
Iinl or Iinh	±0.005			µA max	VIN= VINL or VINH
		±0.5	±0.5	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
t transition		120	120	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		250	250		$V_{S1} = \pm 10 V$, $V_{S8} = \pm 10 V$;
		250	250	ns max	Test Circuit 5
Тввм				ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
			1	ns min	Vs = 5 V; Test Circuit 6
ton(EN)	85	125	125	ns typ	$R_L = 300 \Omega C_L = 35 pF;$
	150	225	225	ns max	Vs = 5 V; Test Circuit 7
toff(EN)		65	65	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		150	150	ns max	Vs = 5 V; Test Circuit 7
				<i>c</i> .	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 10 nF; Test$
Charge Injection	20			pC typ	Circuit 8
OFF Isolation	-75		-75	dB typ	$R_L = 1 \ k\Omega$, f = 100 kHz;
					$V_{EN} = 0 V$; Test Circuit 9
Channel-to-Channel Crosstalk	85		85	dB typ	$RL = 1 k\Omega$, f = 100 kHz;
					Test Circuit 10
Total Harmonic Distortion, THD +	0.000			0(+ + + =	$R_L = 600 \Omega$, 5 V rms; f = 20 Hz to 20
Ν	0.002			% typ	kHz
-3dB Bandwidth	50			MHz typ	$R_L = 300 \Omega$, $C_L = 5 pF$; Test Circuit 10
					Test Circuit 10
Cs (OFF)	15			pF typ	f = 1 MHz
C _D (OFF)					f = 1 MHz
ADG1408	100			pF typ	
ADG1409	50			pF typ	
C _D , C _s (ON)					f = 1 MHz
ADG1408	150			pF typ	
ADG1409	75			pF typ	
POWER REQUIREMENTS					$V_{DD} = +16.5V, V_{SS} = -16.5V$
I _{DD}	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
		5	5	µA max	5
l _{DD}	150			μA typ	Digital inputs= 5 V
			300	µA max	
lss	0.001			μA typ	Digital inputs= 0 V or V _{DD}
		5	5	µA max	
	0.001			μA typ	Digital inputs= 0 V or V _{DD}
		5	5	μA max	· · · · · · · · · · · · · · · · · · ·
	150	-	-	μA typ	Digital inputs= 5 V
		5	300	μA max	

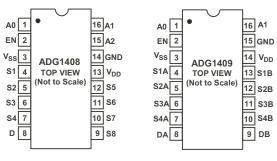
 1 Temperature ranges are as follows: B Version: –40°C to +85°C; Y Version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 4.	
Parameter	Rating
V _{DD} to V _{SS}	36 V
V _{DD} to GND	–0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog, Digital Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 20 mA, whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max)	100 mA
Operating Temperature Range	
Industrial (B Version)	-40° C to +85°C
Automotive (Y Version)	–40° C to +125°C
Storage Temperature Range	–65° C to +150°C
Junction Temperature	150°C
TSSOP Package, Power Dissipation	450 mW
θ _{JA} , Thermal Impedance	150.4°C/W
θ_{JC} , Thermal Impedance	50°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


¹ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

Table 5. ADG1408 Truth Table

A2	A1	A0	EN	ON SWITCH
Х	Х	Х	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Figure 2. Pin Configurations—TSSOP

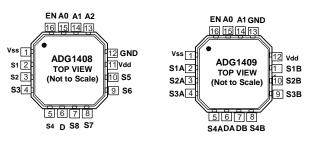


Figure 3. Pin Configurations – 4mm x4mm LFCSP

Table 6. ADG1409 Truth Table

AI	A0	EN	ON SWITCH PAIR
Х	Х	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TERMINOLOGY

Table	7	
I able	1	•

Mnemonic	Description
V _{DD}	Most positive power supply potential.
Vss	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground
GND	Ground (0 V) reference.
Ron	Ohmic resistance between D and S.
ΔR _{ON}	Difference between the R_{ON} of any two channels.
Is (OFF)	Source leakage current when the switch is off.
I _D (OFF)	Drain leakage current when the switch is off.
I _D , Is (ON)	Channel leakage current when the switch is on.
V _D (vs)	Analog voltage on terminals D, S.
Cs (OFF)	Channel input capacitance for OFF condition.
C _D (OFF)	Channel output capacitance for OFF condition.
C _D , C _S (ON)	ON switch capacitance.
CIN	Digital input capacitance.
t _{on} (EN)	Delay time between the 50% and 90% points of the digital input and switch ON condition.
t _{off} (EN)	Delay time between the 50% and 90% points of the digital input and switch OFF condition.
t TRANSITION	Delay time between the 50% and 90% points of the digital inputs and the switch ON condition when switching from one address state to another.
topen	OFF time measured between the 80% point of both switches when switching from one address state to another.
	Maximum input voltage for Logic 0.
	Minimum input voltage for Logic 0.
I _{INL} (I _{INH})	Input current of the digital input.
	Positive supply current.
Iss	Negative supply current.
Off Isolation	A measure of unwanted signal coupling through an OFF channel.
Charge Injection	
Bandwidth	The frequency at which the output is attenuated by 3dBs.
On Response	The frequency response of the "ON" switch.
THD + N	The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
	The facto of the narmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

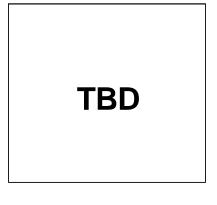


Figure 4. On Resistance as a Function of VD(VS) for Single Supply

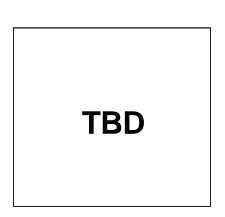
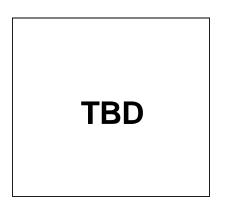
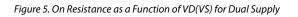




Figure 7. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply

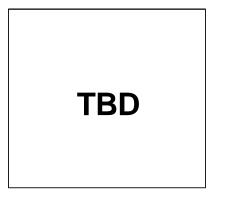


Figure 6. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply

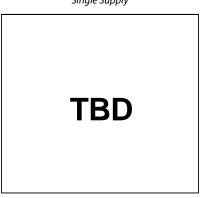


Figure 8. On Resistance as a Function of VD(VS) for Different Temperatures, Dual Supply

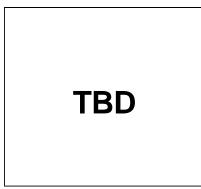


Figure 9. Leakage Currents as a Function of V_D (V_S)

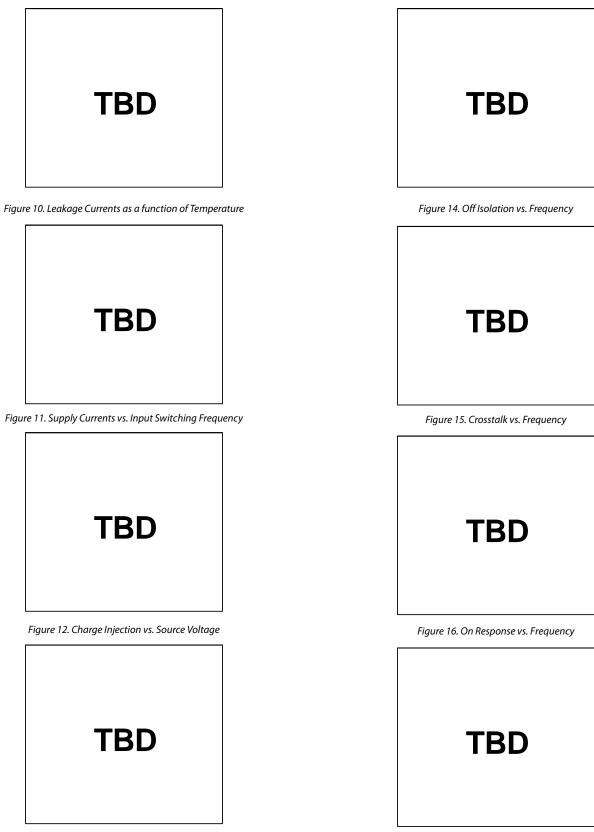


Figure 13. TON/TOFF Times vs. Temperature)

Figure 17. THD + N vs. Frequency

TEST CIRCUITS

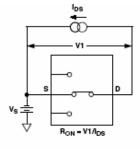


Figure 18. Test Circuit 1. On Resistance

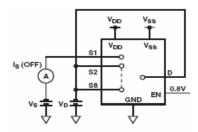


Figure 19. Test Circuit 2. Is (OFF)

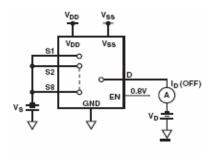


Figure 20. Test Circuit 3. I_D (OFF)

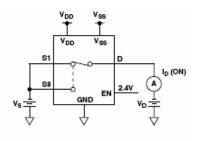


Figure 21. Test Circuit 4. I_D (ON)

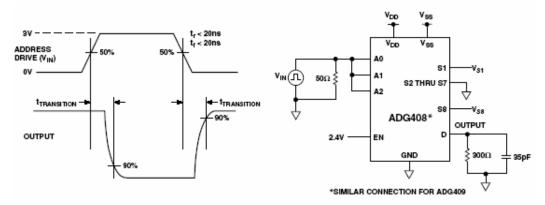


Figure 22. Test Circuit 5. Switching Time of Multiplexer, tTRANSITION

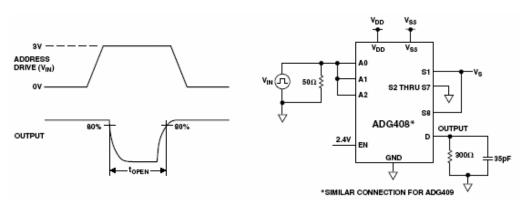


Figure 23. Test Circuit 6. Break-Before-Make Delay, tOPEN

Preliminary Technical Data

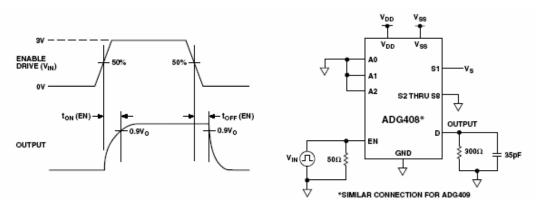
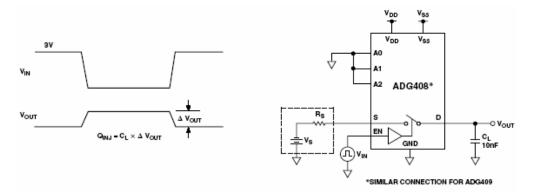
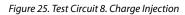




Figure 24. Test Circuit 7. Enable Delay, ton (EN), toff (EN)

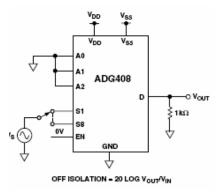


Figure 26. Test Circuit 9. OFF Isolation

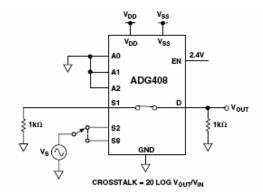


Figure 27. Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

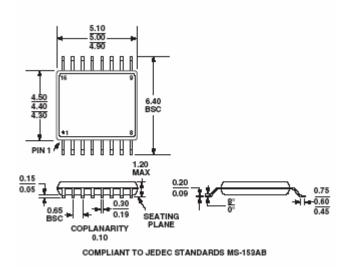


Figure 28. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

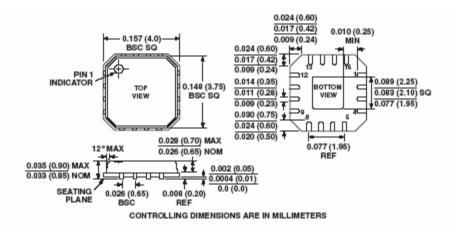


Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4mm × 4 mm (CP-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
ADG1408YRU	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1409YRU	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1409YCP	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	CP-16
ADG1409YCP	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	CP-16

NOTES

NOTES

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR04861–0–11/04(PrB)

www.analog.com

Rev. PrB | Page 16 of 16